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Position statement

We predict that, initially, system software for exascale systems will be rapidly evolving. New
technologies will become available and different ways of using them will come and go. New types of
applications and programming models will also introduce new requirements. Features traditionally
provided by operating systems (OSes) may not be needed in some cases, while new mechanisms,
such as dealing with a much more complex memory hierarchy and the ability to work around faults
or operate in degraded mode, need to be added.

General OS research will not address exascale-specific challenges since their focus is on consumer
OSes and data centers [16]. Also, these OSes are not always suitable for HPC [5], and wont be for
exascale. Issues such as OS-noise [24, 15], fault tolerance, and scalability need to be specifically
addressed. Furthermore, an exascale OS must enable novel methods of using the hardware in
application-specific ways e.g., [6]. Mainstream OS researchers working on parallel systems, often
aim their efforts at MapReduce [8, 9] and Hadoop [1], which are only one type of parallel applications
and not representative of the range of application types and algorithms expected at exascale.

We propose extremely lightweight kernels that can be extended by the runtime system (trusted)
or the applications themselves (not trusted). This will result in highly efficient system software
tailored to a given architecture, the current usage model, and the application(s) running at the
moment. While some of the research necessary to accomplish this has been done in the past, a lot
remains to be done to make this a reality.

Running untrusted user-level code inside an OS kernel has been studied in the 1990’s but has
not really caught on. We believe the time has come to resurrect kernel extensions and combine them
with lightweight kernels for OSes that run on highly-parallel systems. Exascale system kernels must
be able to quickly adapt to the type of application currently running as well as adapt to the diverse
and evolving types of systems. They must do this without sacrificing performance or scalability.

Lightweight kernels [34, 20, 27, 22, 23] have proved themselves running highly parallel systems.
Due to their smallness, they are relatively easy to expand. However, a generalized method is needed
to allow customization for a specific environment and allow applications to tailor kernel behavior
at runtime; e.g., to set scheduling memory access policy. While counterintuitive, small sections
of interpreted code can provide the performance, flexibility, and protection necessary for kernel
extensions [14, 18, 10].

In [11] the authors wonder whether extensible systems lead us astray. Again, their points are
mainly directed at general purposes OSes and do not address the need of OSes specific to exascale.
In [17] the Exokernel designers make many of the points for kernel extensions we make. Given
the specialized environment and usage of a massively parallel system, we need even fewer of the
mechanisms an Exokernel provides. Going with the philosophy of removing as much code and
mechanism from the kernel as possible, we are proposing a kernel that is even more lightweight
than the Exokernel. However, such a kernel needs to be extensible by the runtime system to tailor
it to a specific machine and usage environment. Applications also need to be able to extend the
OS for their specific needs. The latter needs to be done in a protected manner.

The ideas presented in this proposal are explored in more detail in [28].
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Related work

The idea of executing user code, an extension, inside the kernel has seen several incarnations.
Software-based fault isolation [33], is the idea of limiting data accesses to a certain segment of
main memory. SPIN [3] used a trusted compiler to generate digitally signed spindles that get
inserted into the kernel. Global Layer Unix (GLUnix) [31] used software-based fault isolation to
move OS functionality into user level libraries. We want to move user code functionality into the
kernel. The VINO kernel was designed to let applications specify the policies the kernel uses to
manage resources. That is what we are interested in, but specifically for high-performance parallel
environments, instead of database management systems for which VINO was designed.

In the µChoices OS [7, 30] agents can be inserted into the kernel. These agents are written
in a simple, flexible scripting language similar to TCL, and are interpreted. These agents are
mostly simple optimizations to eliminate the overhead of mutiple system calls. The MIT Exo
kernel [13, 12] is similar to the approach proposed here, but the concept needs to be extended to
push some functionality back into the kernel when it is needed at run time. Methods to safely
execute untrusted code in a privileged environment are compared in [29]. Corey’s [4] model of work
assignment and sharing data among cores are some of the things our extensions are supposed to
do. However, we believe that these decisions are better made at the application level. OS support
is needed to implement policy.

Interpreters have been studied extensively and some of them have been embedded in kernels
before. The BSD packet filter is one example [21]. Another is our work of adding a FORTH
interpreter to the firmware of a Myrinet network interface [32]. Interpreters are often considered
to be too slow for system services. However, our extensions are small and perform simple tasks.
Techniques to execute them efficiently exist [25, 26]. Then, using direct or indirect threaded code
techniques, extremely fast interpreters can be built [2, 10, 19, 14].

Assessment

Making lightweight kernels extensible will allow OSes to scale and adapt quickly to new requirements
of exascale systems and computing. What kind of extensibility is needed and how to make it best
accessible to applications and system software developers is an open research topic.

Challenges addressed: Exascale systems will be diverse in architecture, usage, and the appli-
cations they run. They will also be evolving and, initially, require frequent and quick modifications
to system software. There will also be a need to easily try out new systems research ideas.

Maturity: Extensible OSes have been enabling research and experiments for many years.
Lightweight kernels have been in production use on some of the largest systems in the world.

Uniqueness: Extensible, lightweight OSes have not caught on in the mass market place and
receive little research attention. However, consumer OSes are not flexible enough and do not scale
as required. A 10% performance loss in a $200 million machine is a significant loss of investment.

Novelty: Most of the focus is on expanding consumer OSes with little regard to the specific
needs of the HPC community. Lightweight kernels currently in use on large-scale machines are not
extensible at runtime or by the applications using them.

Applicability: In principle, with a large enough variety of powerful extensions, an OS can be
configured for many different architectures and uses. Specialized configurations can be used for
parallel, floating-point heavy computations, and others for more data-centric operations.

Effort: Defining, implementing, and agreeing on a good set of mechanisms and APIs will take
a handful of years to be mature enough to be used routinely. Several small teams are needed in
a collaborative effort. Involvement of application developers interested in cutting edge systems is
also required to make this a success.
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